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When coherent stochastic resonance appears
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We consider a system driven by a combination of Gaussian white noise and a periodic signal. It is demon-
strated when the mean-exit time for this system necessarily exhibits a minimum as a function of the frequency
of the periodic bias and gives rise to the phenomenon known as coherent stochastic resonance. This reasoning
begins by calculating an exact expression for the mean-exit time of a system driven by noise and a telegraph
signal and showing that no resonancelike behavior arises. This unexpected result lets us identify the sufficient
conditions for resonance to appear. The origin of coherent stochastic resonance lies in the different behavior of
low frequency and high frequency periodic sign&81063-651X%97)14505-6

PACS numbedis): 05.40:+j

[. INTRODUCTION tions are modeled by a Markovian colored noise, that is, by a
noise with finite correlation time. It turns out that the activa-
Coherent stochastic resonance is among those phenomeiien rate as a function of the correlation time shows a maxi-
collected under the name stochastic resond8& [1]. The  mum at some correlation time. The origin of this maximum
ingredients for a system to exhibit SR are a noise, which iéieS in the different behavior of the colored noise at short and
usually taken to be white Gaussian for simplicity, and along correlation times as has been explaineffijp Coherent
small driving periodic force added to the dynamics of thestochastic resonance and resonant activation appear in quite
system. When these components mix properly, SR reveals Wiifferent systems. Note, for instance, that in the former it
a non-monotonic behavior of some properties of the systerfiXists with a periodic signal while in the second a colored
if considered as functions of the noise intensity or of thenoise replaces the periodic bias. However, as explained in
periodic driving frequency. Systems showing stochastic resgthis paper, CSR arises from the same source as resonant
nance have been found in biology, magnetic systems, angctivation.
other physical systemid] and many studies have been de- The paper is organized as follows. In Sec. II, we obtain an
voted to it in recent yearg2]. expression for the mean-exit time of a particle simulta-
However, efforts have not concentrated similarly on co-neously driven by additive white noise and a periodic square
herent stochastic resonan@@SR. The paradigm of a sys- wave. The next section is devoted to a discussion of these
tem exhibiting CSR is a diffusion process driven by an os-esults. It is shown that the MET does not exhibit any reso-
cillating force when the motion is constrained between twohant behavior. In addition, we compare the MET for this
trapsl The main properties of such a System were studied igystem with that of diffusion in the presence of dichotomous
[3]. The mean-exit imgMET) out of a region limited by hoise. Finally, we explain the origin of the CSR. Conclusions
two traps was analyzed through simulation of a random wallare drawn in the last section and some mathematical details
on a lattice for a sinusoid driving force. It was shown that theof derivations in Sec. Il are given in the Appendix.
MET exhibits a minimum at some frequency of the driving
force. The origin of this “resonance” was related to the Il. ANALYSIS
coherent motion induced by the periodic bias. Thus, the phe-
nomenon was generically called coherent stochastic res?-
nance. ro
In a recent papef4], the MET of a diffusion process
driven by an oscillating force was considered when the sinu
soid bias was substituted by a telegraph signal. This signal X= £(t)+ v (1) 1)
switches alternatively between the values, and —v af- k
ter a constant period of time. An expression for the MET —\yhere(t) is a zero-mean Gaussian white noise of intensity
was obtained but, due to numerical errors in the computatlorﬂ), ie..
of its value[5], it was concluded incorrectly that the system
presented CSR. In this paper, we calculate the MET for this (E()EL'))y=2Ds(t—t'), (2)
system and show that it does not exhibit any resonant behav-
ior. However, this result lets us identify the sufficient condi- andu(t) is the telegraph signal:
tions for coherent stochastic resonance, which is one of the

Our explanation of coherent stochastic resonance arises
m the analysis of a system driven by white Gaussian noise
and a telegraph signal. The evolution of the system consid-
ered is governed by the one-dimensional equation

main goals of this paper. . +vo, tel[2n7,(2n+1)7] @
Another kind of stochastic resonance phenomena is reso- v(t) —vg, te[(2n+1)7,(2n+2)7],

nant activatior{ 6] and it deals with the problem of potential

barrier crossing due to thermal noise in the presence of flua is a constant and=0,1, . . . . Theperiod of the telegraph

tuations of the barrier itself. In this problem, barrier fluctua-signal is 2r and, therefore, its frequeney=(27) ~1. We are
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interested in the mean survival time of the system when twdn order to calculate the survival probabili§(xg,t), it is
traps are set at=0 andx=L, that is to say, the MET out of necessary to know the probability for the position of the

region (OL).

particle at the points where the telegraph signal changes. We

Dimensionless units will be used in what follows. This is defineP,(x),k=0,1,. . ., as theprobability that the particle

equivalent to setting the noise intensidyand the telegraph

is found at a position betweenandx+ dx at thekth change

amplitudev equal to 1. The probability density function for of the bias, that is to say, at timie=k7. Since the telegraph

the position of a diffusive system driven by a bias + 1, in

the presence of two trapsat0 andx=L, reads as follows

[4]:

2
P (X,tx0) = T exiT b(x—Xo)]

xgl ex] — (B2+ H)t]sin( B,X)SiN BrXo),
(4)

whereB,=nx/L. It is convenient to write this density as

, =
P (tx) =T 2 2t (COMdD (%), (5)

where the functionsy, andy,, are defined as

g (X)=eX'%sin(Bx),
(6)

iy (x) =€¥'%sin( Bx),
and the matrixM(t) is
M i(t) = exd — (BA+ $)t] Sk (7

where &, is the Kroneckers function (6,,=1 if n=k, oth-

erwise 8,,=0). The advantage of this notation will be ex-
plained below. In addition, functions without indexes will

denote vectors, for instance,

¥ (Xo) ={thy (X0), 2 (Xo), - - - sty (X0), ...} (8)

In order to shorten the notation, we will use the dot product
to represent infinite sums over pairs of repeated indexes. The

expression

gl M (1) i (Xo), (9)

for example, will be represented by
M(t)- ¢ (Xo). (10)

Therefore, the expression for, (x,t|x,) reduces to

2
P+ (xtlx0) = T8 (0 M- 9 (o). (1D)

When the bias is- 1, the probability density in this notation

IS

2
P-(X,t|xo)= ¢ ()-M(1)- P (Xo). (12

signal is piecewise constant it follows thRg(x) satisfies the
recurrence relations

L
Py 1(X)= fo D (%, 7ly) Pan(y)dy,
(13

L
Paonya(X)= fo P (X, 7]y)Pons1(y)dy,

where n=0,1,.... Therelation Py=d(x—Xg) arises be-
cause we assume that the system is initiallyatfrhe mean-
exit time T(X,) is related toS(xq,t) by

T(Xo)zzjgnS(Xoi)dt. (14)

It is convenient to rewrite this integral as

* [(k+D)r
T(x0)= >, f S(xo,t)dt (15)
k=0 Jkr

because the survival probability for times [k7,(k+1)7] is
related toP,(x) for k even by

L L
S<xo,t>=S<xo,t'+kr>=fo dxfo D, (U y) Pe(y)dy,
16

wheret’=t—kr, and replacingp, by p_ whenk is odd.
After this substitution in Eq(15), the following expression
for the mean-exit time is obtaindd]:

* r L L
0=, fodt'fodxjo[m(x,t'iy)PZn(y)

+p_(X,t"|y)Pons1(y)1dy. 17

In this paper we develop this expression further and obtain a
method to calculate the mean-exit time up to a prescribed

order of approximation.
The probabilitiesP,(x) are deduced in the Appendix and
read as follows:

2
Pont1(X)= E¢+(X)-(M'| ‘M=) M- (Xo),

(18
2
Pans2(X) = 287 () M-3-(M-1-M-)™ M- 4~ (xo),

with n=0,1, ... andM=M(7). The matriced andJ are
defined as follows:
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2 (L ~ computed for different increasinig until it converges to a
I = Efo P (X) i (X)dX definite value. In Fig. 1, the mean-exit time is calculated as a
function of the frequency for different orders. It can be seen
4B that for <3 in dimensionless units it is sufficient to trun-
vyl cate at order 10. As the values ofincrease, higher order
(1+ BT+ B))"— ABTB] approximations are needed to get good convergence.

=3[1-(-1)""e™t]

2 (L As shown in Fig. 1, the mean-exit time results in a mono-
Jni= _f M(x) l/fk+(X)dX tonic increasing function of frequency and does not show
LJo any resonant behavior when EQO) is used to compute it. A
} physical argument shows why the MET decreases as the fre-

48:B;
(1+B7+ B2~ 4B/ By

quency approaches zero. When the frequency is slightly
greater than zero, the bias reverses-té at some instant
(19 (precisely att= 7). By this time, only a small proportion of
realizations of the process, those that contribute to the greater
When the function$(x) are introduced into Eq.17), the  values of the MET, are found inside the intervall(Q,Due
mean-exit time is given by to the inversion of the bias, these realizations will remain on
. average a longer time in the interval than they would if the
. bias had not reversed. Therefore, MET will increase due to
T(XO):nZl e~ %sin(Brxo) To(w), (20 this contribution. Moreover, as shown in the Appendix, the
following expansion holds from Eq20) when w—0:

=3[(-1)'"et-1]

with
64L%7 L
To(w)=c/ +[c"-1-M-J-A-M],+[c-J-A-M],. T(X0) = ThiadXo) + {27 —2€XH ~ 2%l
(21)
In this expression, the matrik is defined implicitly as xex;{ 32 (L2+472) |sin(mxo /L)
w
-1_ — .- .
A *=1-M-1-M-], (22 L(1+e3?) (1+e-?)

X

. (29

with 1 being the identity matrix, and the components of vec- (9LZ+47%) (et -1) LZ+477
torsc™ are given by

whereTy,;,sis the value of the MET ab=0 and corresponds

L2 Lol to the mean-exit time of a region (0, for a system driven
Cn _Efo dtfo [ (x)-M(1)]ndx, by white noise of intensityp =1 plus a constant bias 1,
(23 1—e *o
2 (7 (L Thiad X0) = ~Xo+ L7 —=- (25)
CE=EJ dtf [¢ (X)-M(t)],dx.
0 0

The componentd,, depend onw through the matrixM and 24 '
the vectorsc® and ¢~ that are functions ofr and s /
=(2w) L. ool |

Once dimensions are introduced, E¢&0) and (21) pro- ’ /
vide the exact solution to the mean-exit time out of region - /
(OL) for a system driven by white Gaussian noise and a 20k / e
telegraph signal, Eq3). It is worth mentioning that it is -~ / TR
possible to use perturbation methd8$ and linear response ,§ [
theory to deal with the same problem when the amplitude 18b |/
v, of the driving signal is small. The latter technique has : n=1
proved very successful in the field of stochastic resonance - ::g
[8] and may give a different insight into the question ad- 1.6 —- n=5
dressed in this paper. Nevertheless, the discussion included A — n=11
in Sec. Il is based on our analytical work. I

R 1 2 3

I1l. DISCUSSION
[
Expression21) for T,,(w) constitutes an important result

of this paper. It has the advantage over the expression pro- g, 1. Approximation of orden to the mean-exit tima (x,)
posed in[4] that it can be calculated numerically UP as a function ofw whenL=4 andx,=2 in dimensionless units
to a prescribed order. When an approximation of orker (p=1y,=1) for (8 n=1 (short dashed line (b) n=2 (long
is considered, all matrices I,0,A,M,1) and vectors dashed ling (c) n=3 (dot-dashed line (d) n=5 (double-dot-
(c™,c*,¢ ") are truncated to ordek. Then, T(X,) is  dashed ling (€) n=11 (solid line).
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FIG. 2. Mean-exit timeT(x,) as a function of the frequency FIG. 3. Mean-exit timeT(x,) as a function of the frequency

o of the telegraph signal fdr=4 andx,=2. Thin solid lines show for a system driven by a telegraph signal and white n¢ésdid
the limiting values of the MET whemnw—o,Tyh,=2.0, and line), and a system driven by dichotomous naise 2w and white

0—0T,,=1.528 ... . Theapproximate result Eq(24) is dis-  noise (dashed ling Magnitudes are represented in dimensionless

played as a dashed line. All magnitudes are dimensionlesanits that correspond to a unit amplitude of the telegraph

(D=1po=1). signal,v,=1, and white noise intensitl) equal to 1. Dimension-
less units are used in both plots and parameter valuels-areand
Xo=2.

We note that the first order correction to the MET at zero
frequency is of order eXp-vy/w]. In Fig. 2, the low fre-

quency approximation of (xq), Eq. (24), is plotted. . . _ :

e it s . \ is the inverse of the telegraph signal half periedThe
. !n the o_pposne "”.“t@ >, the evolution of the system figure shows that the MET for the system driven by dichoto-
is increasingly less influenced by the telegraph signal be-

cause of its higher rate of oscillation. Consequently, the oS noisgdashed ling grows faster from thes=0 value

o and converges slower to the high frequency limit, E2f€),
mean-exit time whe— o converges to the MET of a pure o, the MET of systertl). The reason for this behavior lies
diffusive system,

in the fact that a random value of the signal half period
allows a wider range of extreme events than a deterministic
T yhite Xo) = Xo(L —Xo) (26) p_eriod. Let us consider, fpr instan_ce, the case of onv frequen-
white! 20 2 ' cies. For the telegraph signal, it is not relevant thais not
zero whenever the MET remains much smaller than Aé-
that is, to the MET of system governed by EHd) when  cause by the time the telegraph signal changes its value most
v(t)=0. realizations have already escaped. However, with a random

The telegraph signad(t), Eqg. (3), becomes a random period there is a probability that a change in the signal hap-
noise when its half period is randomized every time the sigpens very soon and therefore the MET is more severely
nal changes value. This randomized signal corresponds toraodified than in the previous case. An analogous reasoning
Markovian dichotomous noise if the telegraph signal halfexplains the observed behavior at high frequencies.
period 7 is distributed according to an exponential density We now turn to the main question of this paper: the origin
function of coherent stochastic resonance. As mentioned in the Intro-

duction, it was shown i3] that the MET of a diffusive
o(t)= Prot<r<t+dt}=re M. (270 system driven by a pure sinusoidal bias exhibits a minimum
at some frequency of the driving force. However, we have
The parametek is the inverse of the average time that the determined in this paper that the resonance disappears when
noise keeps the same value. Although the period of the dithe sinusoidal signal is substituted by a telegraph signal.
chotomous noise is random, it is possible to associate to it aBoth signals are periodic and therefore equally “coherent.”
average frequencywp=N\/2, which gives half the average Hence the reason for coherent stochastic resonance cannot be
number of noise reversals per unit time. the coherence of the periodic bip4]. At high frequencies,

It has been shown recentf9] that the MET of a system the influence of any of the two signals on the MET dimin-
driven by the superposition of white noise and dichotomousshes until it disappears completdlye assumed the periodic
noise does not exhibit any resonantlike behavior. In Fig. 3force to be subthreshold, that is, the system cannot escape in
the MET of a system that evolves according to Ef. is  the absence of noizgeWhat makes the two signals different
compared with the MET of a system driven by just the samas the low frequency behavior. The sinusoidal funct{aith
white noise and a dichotomous noise instead of a telegrapphase equal to zerincreases linearly with time at very low
signal. The amplitude of the random dichotomic signal isfrequencies because

identical to that of the telegraph signaj and the parameter
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sinwt~ wt, (29 acteristic time scaldthe period for the periodic bias and
the correlation time for the nois@pproaches zero and infin-
when w—0. Conversely, the telegraph signghat only ity.
takes two valugskeeps its value constant for a periedlt
turns out that this difference is crucial. The MET of the IV. CONCLUSIONS
system driven by the sinusoidal bias necessarily decreases \ye have revisited the problem of the mean-exit time out
when the frequency increases from zero because at a loyf 5 region for a system driven by additive white Gaussian
frequency(different from zerg it exhibits a growing bias, ngjise and a telegraph signal. The computation of the MET
Eq. (28), that makes the MET smaller than its value atysing the expressiof21) comes out with a monotonically
»=0. In addition, the two limiting values of the MET at increasing function of the frequency and does not exhibit any
w— and o=0 coincide with Ty, EQ. (26). Conse- resonant behavior.
guently, we have demonstrated that if MET is a continuous This fact led us to conclude that the origin of coherent
function of the frequency of the sinusoidal driving force, it stochastic resonance cannot be the “coherence” of the peri-
exhibits one minimum(at least at some frequency. Using odic driving force. We show that CSR appears because of the
similar reasoning, we demonstrated that MET of a systenpehavior of the driving bias at low frequencies. This expla-
driven by a telegraph signal must increase at low frequennation is sim_ilar to that given recently to the phenomenon of
cies. This argument does not exclude the possibility of gesonant activation. .
minimum but implies that, if it existed, a maximum would ~ We also deduced that the MET of a system driven by a
appear first. gen.er.al periodic signal qnd a white Gaussian noise W|II_
Therefore, the source of the so-called coherent stochastfXNibit coherent stochastic resonance whenever two condi-
resonance lies in the different behavior of a periodic signal afions are satisfied. The condmon§ are, first, th‘,"‘t the _\{alue
low and high frequencies. When the periodic signal behave8f the MET at zero frequency is less than its limiting
as an increasing function of time at low frequencies, thealué at high frequency, and second, that the MET is a
MET decreases. Then, coherent stochastic resonance apEcr€asing funct|p_n OT the frequency at !OW frequencies.
pears, that is, the MET exhibits a minimum at some fre- _he. Seco”‘?‘ condition is |mmeQ|ater §at|sf|ed .when the be-
quency, if MET atw=0 is less than its value at the limit riodic functlon behaves as an increasing function of time at
w—o0. This argument parallels the explanation of resonanioV freq_uenmes. Therefore, we have show_n that coh_ere_nt
activation given in[7]. There, however, the behavior of the S_tOChaSt'C resonance can occur for a variety of periodic
system was known at high frequenciéshort correlations SIINals.
times and the condition for resonant behavior is that the
escape time at zero frequency is greater than its value at
infinite frequency (correlation time equal to zeyo This work has been supported in part by Dirécci®en-
Therefore, we see that both phenomena, CSR and resonamal de Investigacio Cientfica y Tecnica under Contract No.
activation, emerge because of the different nature of th€B93-0812, and by Societat Catalana deida (Institut
driving force (a periodic bias in the case of CSR or a corre-d’Estudis Catalans | thank Professor J. Masoliver for a
lated Markovian noise in resonant activatiavhen its char-  careful reading of the manuscript.
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APPENDIX A: DERIVATION OF EQ. (18
We begin from Eq(14) for P, 1(x),

L
Pon+1(X)= fo P+ (X, 7ly)Pan(y)dy. (A1)

After using Eq.(14) successively, the following expression is obtained:

L L L L
Pans1(X)= fo dy1p+(x,7]yy) JO dyop_(y1.7y2) fo dys- - JO dyanP—(Yon—1,7Y2n) P1(Y2n)- (A2)

The initial conditionPy(y) = 8(y —X,) leads to the identity;(y2n) =P+ (Yan, 7|X0). When this result and Eqél1) and(12)
for p.(x,7]y) are introduced into EqA2), we get

2 L 2 L 2 L L 2
Pont1(X)= E‘V(X)'M' fo dy1E¢7(Y1)X ¢ (y1)-M- fo dY2El/’+(Y2)X P (y2)-M- fo dys---M- fo dy2nE1/1+(Y2n)

X" (Yan) M- (Xo). (A3)
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Note that in this expression the terms
L2
J; dy; E’ﬁ_()’l) X (Y1) (A4)

define the matrid whose components were set in Ef9)
and read as follows:

2 (L
Ink= [fo P (X) by (X)dX. (A5)

The matrixJ is equivalent to when ¢ (x) is replaced by

¥ (x). This notation leads directly to Eq(18) for
P,,+1(X) and by a similar reasoning 1,,,,»(X).

APPENDIX B: DERIVATION OF EQ. (21)
The derivation starts from Edq17) for the MET,

* T L L
T(Xo)=n§=:O jo dt'JO dXJ’O [P+ (X,t'[y)P2n(y)

+P-(X,t']y)Pani1(y)1dy. (B1)

Using Egs.(11) and (12) for p.(x,7]y), this expression

reads

* L
T(X0)= 2, c+~f ¥ (Y)Pan(y)dy
n=0 0

” L
+2 ¢ | W WPaaly)dy, (B2
where vectore™ andc™ are given by
2 (7 L
C+:—f dtJ P (X)-M(t)dx,
LJo Jo
(B3)
2(r L
°*=—f dtf %~ (X)-M(t)dx.
LJo Jo

We then introduce Eq18) for P, 1(X) andP,,»(X) into
Eq. (B2) and obtain

T(xo)=Cc"- 4 (Xo)

+ZO ¢t 1-M-J-(M-1-M-)"- M- ¢~ (Xo)

©

+> ¢ -3 (M- I-M-)" M- (x). (B4
n=0
The definition of the matripd,

A= (M- 1-M-))"=(1-M-1-M-J)"L,  (B5)
n=0
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T(Xg)=C" - ¢ (Xg)+C - 1-M-J-A-M- ¢ (Xo)
+C - J-AM- g (X). (B6)

Equation(21) follows directly from this.

APPENDIX C: DERIVATION OF EQ. (24

The MET, Eq.(20), depends onw through the compo-
nentsT,(w),

To(w)=C/ +[c"-1-M-J-A-M],+[c - J-A-M],.
(Cy)

The behavior of these components at low frequencies gives
expansion24). Whenw—0, ¢, behaves as

2m(1+e?)
nl
L2(BI+ )2

+
n

2B[1-€"H-1)"
L(Ba+3)?

xexp — ! (L?2+47)
8L%w

of-

andc,, has the same expression after repladingy —L in

the exponential functions. This result follows directly from
Eq. (20). The Kroneckers function &,; indicates that the
lowest-order correction term affects only to the component
T,(w). To this order of approximation, the second term in
the right-hand side of EqC1) does not contribute and the
third term reads as follows:

+0

8L12w(L2+4772)D, (C2)

c -J].exp — ! L2+472) (C3
[ . ]l X 8L2(.U( T .

Therefore, the leading term of the MET expansion around
0=0 is of order exp—y/w], with y=(L2+47?)/8L2. The
first term in Eq.(C2) for ¢, gives the coefficients of the
expansion ofT yi,d Xg) in terms of functionsy,, (xe), that is,

1—e %
1-et

ThiadXo) = —Xo+L

_2 o Bal1—e"A(—1)"
L™ it (Bi+9)?

Sin( BnXo)-

(C4

The correction arises from the second terncinand from

with 1 being the identity matrix, simplifies the last expres- expressionC3). In order to calculate the later, we use Eq.

sion, which can be written as

(19 for matrix J and write
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* * 2 (L where
[ 3= 2 ccdia= 2 C Ef Y (01 (x)dx.
k=1 k=1 0 ~ _ X
(9 T (0)=x-Li—
Then, after reversing the order of summation and integration, - L2 K
the following result is obtained: _ Eex/z Bdl-e "*(-1) ]nir](’B x). (C7)
L - 2, 1,2 S kA)-
k=1 (Bt 1)

2 (L
c -J =—f T (x)e’%sin(B,x)dX, C6
[ I LJo (x) (A1) 6 Equation(24) follows from here after some algebra.
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