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When coherent stochastic resonance appears

Josep M. Porra`
Departament de Fı´sica Fonamental, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain

~Received 18 December 1996!

We consider a system driven by a combination of Gaussian white noise and a periodic signal. It is demon-
strated when the mean-exit time for this system necessarily exhibits a minimum as a function of the frequency
of the periodic bias and gives rise to the phenomenon known as coherent stochastic resonance. This reasoning
begins by calculating an exact expression for the mean-exit time of a system driven by noise and a telegraph
signal and showing that no resonancelike behavior arises. This unexpected result lets us identify the sufficient
conditions for resonance to appear. The origin of coherent stochastic resonance lies in the different behavior of
low frequency and high frequency periodic signals.@S1063-651X~97!14505-6#

PACS number~s!: 05.40.1j
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I. INTRODUCTION

Coherent stochastic resonance is among those pheno
collected under the name stochastic resonance~SR! @1#. The
ingredients for a system to exhibit SR are a noise, which
usually taken to be white Gaussian for simplicity, and
small driving periodic force added to the dynamics of t
system. When these components mix properly, SR reveal
a non-monotonic behavior of some properties of the sys
if considered as functions of the noise intensity or of t
periodic driving frequency. Systems showing stochastic re
nance have been found in biology, magnetic systems,
other physical systems@1# and many studies have been d
voted to it in recent years@2#.

However, efforts have not concentrated similarly on c
herent stochastic resonance~CSR!. The paradigm of a sys
tem exhibiting CSR is a diffusion process driven by an
cillating force when the motion is constrained between t
traps. The main properties of such a system were studie
@3#. The mean-exit time~MET! out of a region limited by
two traps was analyzed through simulation of a random w
on a lattice for a sinusoid driving force. It was shown that t
MET exhibits a minimum at some frequency of the drivin
force. The origin of this ‘‘resonance’’ was related to th
coherent motion induced by the periodic bias. Thus, the p
nomenon was generically called coherent stochastic r
nance.

In a recent paper@4#, the MET of a diffusion process
driven by an oscillating force was considered when the si
soid bias was substituted by a telegraph signal. This sig
switches alternatively between the values1v0 and2v0 af-
ter a constant period of timet. An expression for the MET
was obtained but, due to numerical errors in the computa
of its value@5#, it was concluded incorrectly that the syste
presented CSR. In this paper, we calculate the MET for
system and show that it does not exhibit any resonant be
ior. However, this result lets us identify the sufficient con
tions for coherent stochastic resonance, which is one of
main goals of this paper.

Another kind of stochastic resonance phenomena is r
nant activation@6# and it deals with the problem of potentia
barrier crossing due to thermal noise in the presence of fl
tuations of the barrier itself. In this problem, barrier fluctu
551063-651X/97/55~6!/6533~7!/$10.00
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tions are modeled by a Markovian colored noise, that is, b
noise with finite correlation time. It turns out that the activ
tion rate as a function of the correlation time shows a ma
mum at some correlation time. The origin of this maximu
lies in the different behavior of the colored noise at short a
long correlation times as has been explained in@7#. Coherent
stochastic resonance and resonant activation appear in
different systems. Note, for instance, that in the former
exists with a periodic signal while in the second a color
noise replaces the periodic bias. However, as explaine
this paper, CSR arises from the same source as reso
activation.

The paper is organized as follows. In Sec. II, we obtain
expression for the mean-exit time of a particle simul
neously driven by additive white noise and a periodic squ
wave. The next section is devoted to a discussion of th
results. It is shown that the MET does not exhibit any re
nant behavior. In addition, we compare the MET for th
system with that of diffusion in the presence of dichotomo
noise. Finally, we explain the origin of the CSR. Conclusio
are drawn in the last section and some mathematical de
of derivations in Sec. II are given in the Appendix.

II. ANALYSIS

Our explanation of coherent stochastic resonance ar
from the analysis of a system driven by white Gaussian no
and a telegraph signal. The evolution of the system con
ered is governed by the one-dimensional equation

Ẋ5j~ t !1v~ t !, ~1!

wherej(t) is a zero-mean Gaussian white noise of intens
D, i.e.,

^j~ t !j~ t8!&52Dd~ t2t8!, ~2!

andv(t) is the telegraph signal:

v~ t !H 1v0 , tP@2nt,~2n11!t#

2v0 , tP@~2n11!t,~2n12!t#,
~3!

v0 is a constant andn50,1, . . . . Theperiod of the telegraph
signal is 2t and, therefore, its frequencyv5(2t)21. We are
6533 © 1997 The American Physical Society
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interested in the mean survival time of the system when
traps are set atx50 andx5L, that is to say, the MET out o
region (0,L).

Dimensionless units will be used in what follows. This
equivalent to setting the noise intensityD and the telegraph
amplitudev0 equal to 1. The probability density function fo
the position of a diffusive system driven by a biasv511, in
the presence of two traps atx50 andx5L, reads as follows
@4#:

p1~x,tux0!5
2

L
exp@ 1

2 ~x2x0!#

3 (
n51

`

exp@2~bn
21 1

4 !t#sin~bnx!sin~bnx0!,

~4!

wherebn5np/L. It is convenient to write this density as

p1~x,tux0!5
2

L (
n51

`

(
k51

`

cn
1~x!Mnk~ t !ck

2~x0!, ~5!

where the functionscn
1 andcn

2 are defined as

cn
2~x!5e2x/2sin~bnx!,

~6!

cn
1~x!5ex/2sin~bnx!,

and the matrixM(t) is

Mnk~ t !5exp@2~bn
21 1

4 !t#dnk , ~7!

wherednk is the Kroneckerd function (dnk51 if n5k, oth-
erwisednk50). The advantage of this notation will be e
plained below. In addition, functions without indexes w
denote vectors, for instance,

c2~x0!5$c1
2~x0!,c2

2~x0!, . . . ,cn
2~x0!, . . . %. ~8!

In order to shorten the notation, we will use the dot prod
to represent infinite sums over pairs of repeated indexes.
expression

(
k51

`

Mnk~ t !ck
2~x0!, ~9!

for example, will be represented by

M~ t !•c2~x0!. ~10!

Therefore, the expression forp1(x,tux0) reduces to

p1~x,tux0!5
2

L
c1~x!•M~ t !•c2~x0!. ~11!

When the bias is21, the probability density in this notatio
is

p2~x,tux0!5
2

L
c2~x!•M~ t !•c1~x0!. ~12!
o

t
he

In order to calculate the survival probabilityS(x0 ,t), it is
necessary to know the probability for the position of t
particle at the points where the telegraph signal changes.
definePk(x),k50,1, . . . , as theprobability that the particle
is found at a position betweenx andx1dx at thekth change
of the bias, that is to say, at timet5kt. Since the telegraph
signal is piecewise constant it follows thatPk(x) satisfies the
recurrence relations

P2n11~x!5E
0

L

p1~x,tuy!P2n~y!dy,

~13!

P2n12~x!5E
0

L

p2~x,tuy!P2n11~y!dy,

where n50,1, . . . . The relation P05d(x2x0) arises be-
cause we assume that the system is initially atx0. The mean-
exit timeT(x0) is related toS(x0 ,t) by

T~x0!5E
0

`

S~x0 ,t !dt. ~14!

It is convenient to rewrite this integral as

T~x0!5 (
k50

` E
kt

~k11!t
S~x0 ,t !dt ~15!

because the survival probability for timestP@kt,(k11)t# is
related toPk(x) for k even by

S~x0 ,t !5S~x0 ,t81kt!5E
0

L

dxE
0

L

p1~x,t8uy!Pk~y!dy,

~16!

where t85t2kt, and replacingp1 by p2 when k is odd.
After this substitution in Eq.~15!, the following expression
for the mean-exit time is obtained@4#:

T~x0!5 (
n50

` E
0

t

dt8E
0

L

dxE
0

L

@p1~x,t8uy!P2n~y!

1p2~x,t8uy!P2n11~y!#dy. ~17!

In this paper we develop this expression further and obta
method to calculate the mean-exit time up to a prescri
order of approximation.

The probabilitiesPk(x) are deduced in the Appendix an
read as follows:

P2n11~x!5
2

L
c1~x!•~M•I•M•J!n•M•c2~x0!,

~18!

P2n12~x!5
2

L
c2~x!•M•J•~M•I•M•J!n•M•c2~x0!,

with n50,1, . . . andM[M(t). The matricesI and J are
defined as follows:
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I nk[
2

LE0
L

cn
2~x!ck

2~x!dx

5 1
2 @12~21! i1 je2L#F 4b ib j

~11b i
21b j

2!224b i
2b j

2G ,
Jnk[

2

LE0
L

cn
1~x!ck

1~x!dx

5 1
2 @~21! i1 jeL21#F 4b ib j

~11b i
21b j

2!224b i
2b j

2G .
~19!

When the functionsPk(x) are introduced into Eq.~17!, the
mean-exit time is given by

T~x0!5 (
n51

`

e2x0/2sin~bnx0!Tn~v!, ~20!

with

Tn~v!5cn
11@c1

•I•M•J•A•M#n1@c2
•J•A•M#n .

~21!

In this expression, the matrixA is defined implicitly as

A21512M•I•M•J, ~22!

with 1 being the identity matrix, and the components of ve
tors c6 are given by

cn
15

2

LE0
t

dtE
0

L

@c1~x!•M~ t !#ndx,

~23!

cn
25

2

LE0
t

dtE
0

L

@c2~x!•M~ t !#ndx.

The componentsTn depend onv through the matrixM and
the vectors c1 and c2 that are functions oft and
t5(2v)21.

Once dimensions are introduced, Eqs.~20! and ~21! pro-
vide the exact solution to the mean-exit time out of reg
(0,L) for a system driven by white Gaussian noise and
telegraph signal, Eq.~3!. It is worth mentioning that it is
possible to use perturbation methods@3# and linear response
theory to deal with the same problem when the amplitu
v0 of the driving signal is small. The latter technique h
proved very successful in the field of stochastic resona
@8# and may give a different insight into the question a
dressed in this paper. Nevertheless, the discussion inclu
in Sec. III is based on our analytical work.

III. DISCUSSION

Expression~21! for Tn(v) constitutes an important resu
of this paper. It has the advantage over the expression
posed in @4# that it can be calculated numerically u
to a prescribed order. When an approximation of ordek
is considered, all matrices (I ,J,A,M,1) and vectors
(c2,c1,c2,c1) are truncated to orderk. Then, T(x0) is
-
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computed for different increasingk until it converges to a
definite value. In Fig. 1, the mean-exit time is calculated a
function of the frequency for different orders. It can be se
that forv,3 in dimensionless units it is sufficient to trun
cate at order 10. As the values ofv increase, higher orde
approximations are needed to get good convergence.

As shown in Fig. 1, the mean-exit time results in a mon
tonic increasing function of frequency and does not sh
any resonant behavior when Eq.~20! is used to compute it. A
physical argument shows why the MET decreases as the
quency approaches zero. When the frequency is slig
greater than zero, the bias reverses to21 at some instant
~precisely att5t). By this time, only a small proportion o
realizations of the process, those that contribute to the gre
values of the MET, are found inside the interval (0,L). Due
to the inversion of the bias, these realizations will remain
average a longer time in the interval than they would if t
bias had not reversed. Therefore, MET will increase due
this contribution. Moreover, as shown in the Appendix, t
following expansion holds from Eq.~20! whenv→0:

T~x0!5Tbias~x0!1
64L2p

L214p2 exp@2 1
2x0#

3expF2
1

8L2v
~L214p2!Gsin~px0 /L !

3F L~11e3L/2!

~9L214p2!~eL21!
2

~11eL/2!

L214p2 G , ~24!

whereTbias is the value of the MET atv50 and corresponds
to the mean-exit time of a region (0,L) for a system driven
by white noise of intensityD51 plus a constant bias11,

Tbias~x0!52x01L
12e2x0

12e2L . ~25!

FIG. 1. Approximation of ordern to the mean-exit timeT(x0)
as a function ofv when L54 andx052 in dimensionless units
(D51,v051) for ~a! n51 ~short dashed line!; ~b! n52 ~long
dashed line!; ~c! n53 ~dot-dashed line!; ~d! n55 ~double-dot-
dashed line!; ~e! n511 ~solid line!.
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We note that the first order correction to the MET at ze
frequency is of order exp@2g/v#. In Fig. 2, the low fre-
quency approximation ofT(x0), Eq. ~24!, is plotted.

In the opposite limit,v→`, the evolution of the system
is increasingly less influenced by the telegraph signal
cause of its higher rate of oscillation. Consequently,
mean-exit time whenv→` converges to the MET of a pur
diffusive system,

Twhite~x0!5
x0~L2x0!

2
, ~26!

that is, to the MET of system governed by Eq.~1! when
v(t)50.

The telegraph signalv(t), Eq. ~3!, becomes a random
noise when its half period is randomized every time the s
nal changes value. This randomized signal corresponds
Markovian dichotomous noise if the telegraph signal h
period t is distributed according to an exponential dens
function

f~ t !5 Prob$t,t<t1dt%5le2lt. ~27!

The parameterl is the inverse of the average time that t
noise keeps the same value. Although the period of the
chotomous noise is random, it is possible to associate to
average frequency,v5l/2, which gives half the averag
number of noise reversals per unit time.

It has been shown recently@9# that the MET of a system
driven by the superposition of white noise and dichotomo
noise does not exhibit any resonantlike behavior. In Fig
the MET of a system that evolves according to Eq.~1! is
compared with the MET of a system driven by just the sa
white noise and a dichotomous noise instead of a telegr
signal. The amplitude of the random dichotomic signal

FIG. 2. Mean-exit timeT(x0) as a function of the frequenc
v of the telegraph signal forL54 andx052. Thin solid lines show
the limiting values of the MET whenv→`,Twhite52.0, and
v→0,Tbias51.523 . . . . The approximate result Eq.~24! is dis-
played as a dashed line. All magnitudes are dimension
(D51,v051).
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identical to that of the telegraph signalv0 and the paramete
l is the inverse of the telegraph signal half periodt. The
figure shows that the MET for the system driven by dicho
mous noise~dashed line! grows faster from thev50 value
and converges slower to the high frequency limit, Eq.~26!,
than the MET of system~1!. The reason for this behavior lie
in the fact that a random value of the signal half peri
allows a wider range of extreme events than a determini
period. Let us consider, for instance, the case of low frequ
cies. For the telegraph signal, it is not relevant thatv is not
zero whenever the MET remains much smaller than 1/v be-
cause by the time the telegraph signal changes its value m
realizations have already escaped. However, with a rand
period there is a probability that a change in the signal h
pens very soon and therefore the MET is more seve
modified than in the previous case. An analogous reason
explains the observed behavior at high frequencies.

We now turn to the main question of this paper: the orig
of coherent stochastic resonance. As mentioned in the In
duction, it was shown in@3# that the MET of a diffusive
system driven by a pure sinusoidal bias exhibits a minim
at some frequency of the driving force. However, we ha
determined in this paper that the resonance disappears w
the sinusoidal signal is substituted by a telegraph sig
Both signals are periodic and therefore equally ‘‘coheren
Hence the reason for coherent stochastic resonance cann
the coherence of the periodic bias@4#. At high frequencies,
the influence of any of the two signals on the MET dimi
ishes until it disappears completely~we assumed the periodi
force to be subthreshold, that is, the system cannot esca
the absence of noise!. What makes the two signals differen
is the low frequency behavior. The sinusoidal function~with
phase equal to zero! increases linearly with time at very low
frequencies because

ss

FIG. 3. Mean-exit timeT(x0) as a function of the frequency
v for a system driven by a telegraph signal and white noise~solid
line!, and a system driven by dichotomous noisel52v and white
noise ~dashed line!. Magnitudes are represented in dimensionle
units that correspond to a unit amplitude of the telegra
signal,v051, and white noise intensityD equal to 1. Dimension-
less units are used in both plots and parameter values areL54 and
x052.
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55 6537WHEN COHERENT STOCHASTIC RESONANCE APPEARS
sinvt;vt, ~28!

when v→0. Conversely, the telegraph signal~that only
takes two values! keeps its value constant for a periodt. It
turns out that this difference is crucial. The MET of th
system driven by the sinusoidal bias necessarily decre
when the frequency increases from zero because at a
frequency~different from zero! it exhibits a growing bias,
Eq. ~28!, that makes the MET smaller than its value
v50. In addition, the two limiting values of the MET a
v→` and v50 coincide with Twhite, Eq. ~26!. Conse-
quently, we have demonstrated that if MET is a continuo
function of the frequency of the sinusoidal driving force,
exhibits one minimum~at least! at some frequency. Using
similar reasoning, we demonstrated that MET of a syst
driven by a telegraph signal must increase at low frequ
cies. This argument does not exclude the possibility o
minimum but implies that, if it existed, a maximum wou
appear first.

Therefore, the source of the so-called coherent stocha
resonance lies in the different behavior of a periodic signa
low and high frequencies. When the periodic signal beha
as an increasing function of time at low frequencies,
MET decreases. Then, coherent stochastic resonance
pears, that is, the MET exhibits a minimum at some f
quency, if MET atv50 is less than its value at the lim
v→`. This argument parallels the explanation of reson
activation given in@7#. There, however, the behavior of th
system was known at high frequencies~short correlations
times! and the condition for resonant behavior is that t
escape time at zero frequency is greater than its valu
infinite frequency ~correlation time equal to zero!.
Therefore, we see that both phenomena, CSR and reso
activation, emerge because of the different nature of
driving force~a periodic bias in the case of CSR or a cor
lated Markovian noise in resonant activation! when its char-
es
w
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acteristic time scale~the period for the periodic bias an
the correlation time for the noise! approaches zero and infin
ity.

IV. CONCLUSIONS

We have revisited the problem of the mean-exit time o
of a region for a system driven by additive white Gauss
noise and a telegraph signal. The computation of the M
using the expression~21! comes out with a monotonically
increasing function of the frequency and does not exhibit a
resonant behavior.

This fact led us to conclude that the origin of cohere
stochastic resonance cannot be the ‘‘coherence’’ of the p
odic driving force. We show that CSR appears because of
behavior of the driving bias at low frequencies. This exp
nation is similar to that given recently to the phenomenon
resonant activation.

We also deduced that the MET of a system driven b
general periodic signal and a white Gaussian noise
exhibit coherent stochastic resonance whenever two co
tions are satisfied. The conditions are, first, that the va
of the MET at zero frequency is less than its limitin
value at high frequency, and second, that the MET is
decreasing function of the frequency at low frequenci
The second condition is immediately satisfied when the
riodic function behaves as an increasing function of time
low frequencies. Therefore, we have shown that cohe
stochastic resonance can occur for a variety of perio
signals.
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APPENDIX A: DERIVATION OF EQ. „18…

We begin from Eq.~14! for P2n11(x),

P2n11~x!5E
0

L

p1~x,tuy!P2n~y!dy. ~A1!

After using Eq.~14! successively, the following expression is obtained:

P2n11~x!5E
0

L

dy1p1~x,tuy1!E
0

L

dy2p2~y1 ,tuy2!E
0

L

dy3•••E
0

L

dy2np2~y2n21 ,tuy2n!P1~y2n!. ~A2!

The initial conditionP0(y)5d(y2x0) leads to the identityP1(y2n)5p1(y2n ,tux0). When this result and Eqs.~11! and~12!
for p6(x,tuy) are introduced into Eq.~A2!, we get

P2n11~x!5
2

L
c1~x!•M•E

0

L

dy1
2

L
c2~y1!3c2~y1!•M•E

0

L

dy2
2

L
c1~y2!3c1~y2!•M•E

0

L

dy3•••M•E
0

L

dy2n
2

L
c1~y2n!

3c1~y2n!•M•c2~x0!. ~A3!
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Note that in this expression the terms

E
0

L

dy1
2

L
c2~y1!3c2~y1! ~A4!

define the matrixI whose components were set in Eq.~19!
and read as follows:

I nk[
2

LE0
L

cn
2~x!ck

2~x!dx. ~A5!

The matrixJ is equivalent toI whenc2(x) is replaced by
c1(x). This notation leads directly to Eq.~18! for
P2n11(x) and by a similar reasoning toP2n12(x).

APPENDIX B: DERIVATION OF EQ. „21…

The derivation starts from Eq.~17! for the MET,

T~x0!5 (
n50

` E
0

t

dt8E
0

L

dxE
0

L

@p1~x,t8uy!P2n~y!

1p2~x,t8uy!P2n11~y!#dy. ~B1!

Using Eqs. ~11! and ~12! for p6(x,tuy), this expression
reads

T~x0!5 (
n50

`

c1
•E

0

L

c2~y!P2n~y!dy

1 (
n50

`

c2
•E

0

L

c1~y!P2n11~y!dy, ~B2!

where vectorsc1 andc2 are given by

c15
2

LE0
t

dtE
0

L

c1~x!•M~ t !dx,

~B3!

c25
2

LE0
t

dtE
0

L

c2~x!•M~ t !dx.

We then introduce Eq.~18! for P2n11(x) andP2n12(x) into
Eq. ~B2! and obtain

T~x0!5c1
•c2~x0!

1 (
n50

`

c1
•I•M•J•~M•I•M•J!n•M•c2~x0!

1 (
n50

`

c2
•J•~M•I•M•J!n•M•c2~x0!. ~B4!

The definition of the matrixA,

A5 (
n50

`

~M•I•M•J!n[~12M•I•M•J!21, ~B5!

with 1 being the identity matrix, simplifies the last expre
sion, which can be written as
T~x0!5c1
•c2~x0!1c1

•I•M•J•A•M•c2~x0!

1c2
•J•A•M•c2~x0!. ~B6!

Equation~21! follows directly from this.

APPENDIX C: DERIVATION OF EQ. „24…

The MET, Eq.~20!, depends onv through the compo-
nentsTn(v),

Tn~v!5cn
11@c1

•I•M•J•A•M#n1@c2
•J•A•M#n .

~C1!

The behavior of these components at low frequencies g
expansion~24!. Whenv→0, cn

1 behaves as

cn
1;

2bn@12eL/2~21!n#

L~bn
21 1

4 !2
2dn1

2p~11eL/2!

L2~b1
21 1

4 !2

3expF2
1

8L2v
~L214p2!G

1oS expF2
1

8L2v
~L214p2!G D , ~C2!

andcn
2 has the same expression after replacingL by 2L in

the exponential functions. This result follows directly fro
Eq. ~20!. The Kroneckerd function dn1 indicates that the
lowest-order correction term affects only to the compon
T1(v). To this order of approximation, the second term
the right-hand side of Eq.~C1! does not contribute and th
third term reads as follows:

@c2
•J#1expF2

1

8L2v
~L214p2!G . ~C3!

Therefore, the leading term of the MET expansion arou
v50 is of order exp@2g/v#, with g5(L214p2)/8L2. The
first term in Eq.~C2! for cn

1 gives the coefficients of the
expansion ofTbias(x0) in terms of functionscn

2(x0), that is,

Tbias~x0!52x01L
12e2x0

12e2L

5
2

L
e2x0/2(

n51

`
bn@12eL/2~21!n#

~bn
21 1

4 !2
sin~bnx0!.

~C4!

The correction arises from the second term incn
1 and from

expression~C3!. In order to calculate the later, we use E
~19! for matrix J and write
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@c2
•J#15 (

k51

`

ck
2Jk15 (

k51

`

ck
2
2

LE0
L

ck
1~x!c1

1~x!dx.

~C5!

Then, after reversing the order of summation and integrat
the following result is obtained:

@c2
•J#15

2

LE0
L

T2~x!ex/2sin~b1x!dx, ~C6!
rld
n,

where

T2~x!5x2L
12ex

12eL

5
2

L
ex/2(

k51

`
bk@12e2L/2~21!k#

~bk
21 1

4 !2
sin~bkx!. ~C7!

Equation~24! follows from here after some algebra.
.
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